An Introduction to Regularized Estimation in High Dimensions considers statistical theory, methods, and algorithms for large and complex data. The main focus is on regularized estimators, which are at the cusp of entering the statistical toolkits of almost all scientific disciplines.
This book provides clear expositions, motivational introductions to each chapter, rigorous step-by-step proofs, and comprehensive exercise sets with fully worked out solutions. These features make this book ideal for graduate level courses. Moreover, the book also discusses cutting-edge topics, such as aspects of inference, robustness, and tuning parameters.
The book also contains results and insights that are new altogether, including improvements of existing theories and novel connections among different methods, which are organized into special chapters for those wishing to advance their reading in the field.